Зміни у житті сучасної школи вимагають від учителя уміння надати навчально-виховному процесу розвивального характеру, активізувати пізнавальну діяльність учнів. У процесі навчання математики важливо розвивати у дітей уміння спостерігати, порівнювати, аналізувати об’єкти, узагальнювати, розмірковувати, обґрунтовувати висновки, до яких учні приходять в результаті виконання завдань. Велику роль у розвитку мислення на уроках математики відіграють систематичні цілеспрямовані усні обчислення.
У методиці математики розрізняють усні і письмові обчислення. До усних належать усі прийоми для випадків обчислень у межах 100, а також ті прийоми обчислень для випадків за межами 100, які зводяться до них (наприклад, прийоми для випадку 900 · 7 буде усний, бо він зводиться для випадку 9 · 7). До письмових належать прийоми для всіх інших випадків обчислень над числами, що перевищують 100 [5, 52].
Перейдемо безпосередньо до аналізу програми початкового курсу математики [39]. Такий аналіз передбачає розкриття особливостей змісту і побудови початкового курсу математики; з'ясування зв'язків у вивченні програмового матеріалу (зокрема, арифметичного, алгебраїчного й геометричного), у вивченні теорії й формуванні вмінь і навичок практичної спрямованості курсу. Аналіз програми передбачає характеристику визначальних методичних спрямувань у вивченні кожної з її основних тем.
Опрацювання понять про натуральне число і арифметичні дії проводиться протягом усього навчання в початкових класах. Ставляться завдання сформувати в учнів уявлення про натуральні числа; домогтися усвідомлення математичних понять і арифметичних дій, знання таблиць кожної дії та прийомів усного й письмового виконання дій; виробити міцні обчислювальні навички. На основі правил порядку виконання дій та властивостей арифметичних дій учні повинні вміти знаходити значення числових виразів, у т. ч. виразів з дужками на три-чотири операції [41].
Робота над нумерацією та арифметичними діями будується в початковому курсі концентрично [4]. Програмою намічена система поступового розширення області чисел, що розглядаються: перший десяток, другий десяток, сотня, тисяча, багатоцифрові числа (в межах мільйона). У межах першого і другого десятків розглядаються лише дії додавання і віднімання (табличні випадки та випадки, пов'язані з нумерацією чисел), а в межах решти концентрів — усі арифметичні дії [39].
Принцип "концентричності" переважно стосується нумерації і арифметичних дій. Інші питання програми вивчаються за лінійним принципом. Тому точніше буде сказати, що програмовий матеріал вивчається за концентрично-лінійним принципом. Навчання починається з невеликих чисел. Числова область поступово розширюється, і вводяться нові поняття. Така побудова курсу забезпечує систематичне повторення і поглиблення знань і вмінь, відповідає психологічному розвитку учнів. Особливо вона корисна для формування поняття про систему числення. Поняття розряду, розрядної одиниці, розрядного числа, а також класу і одиниці класу знаходять свій розвиток від концентра до концентра.
Методичне спрямування вивчення основних тем визначається як самою програмою, так і системою вправ і задач, що реалізуються в стабільних підручниках з математики для початкових класів [33, 86].
У програмі 1 класу окремим розділом виділяється вивчення чисел першого десятка. Вивчення нумерації чисел першого десятка будується на наочно-предметній основі. На ознайомлення з кожним числом в середньому відводиться два-три уроки. На першому уроці учні ознайомлюються з утворенням нового числа і цифрою, а на другому і третьому — порівнюють числа та розглядають склад числа з двох менших чисел. Уроки на ознайомлення з кожним числом проводяться в єдиному плані, що передбачає опрацювання завдань такого виду: лічба предметів множин, чисельність яких характеризується числом, що розглядається; утворення даного числа з попереднього і одиниці; співвідношення кількості предметів з числом І числа з відповідною кількістю предметів; порівняння даного числа з одиницею; вибіркова лічба; розгляд і написання цифри числа. Вправи варіюються на різному дидактичному матеріалі, але зміст і будова сторінок підручника на вивчення нумерації чисел схожі. Це дає змогу поступово посилювати пізнавальну активність учнів [39, 18].
У вивченні дій додавання і віднімання в межах десяти виділено такі теми: дії додавання і віднімання, зв'язок додавання і віднімання, додавання і віднімання нуля, складання і читання прикладів на основі предметних ситуацій і малюнків; таблиці додавання і віднімання в межах десяти; прийоми додавання і віднімання по одиниці і групами (в порядку ознайомлення), переставна властивість додавання.
Розв'язування прикладів на додавання і віднімання без опори на предметні ситуації запроваджується тільки в ході вивчення таблиць. Таблиці додавання і віднімання складають за допомогою відповідних малюнків предметних множин. У засвоєнні таблиць велике значення мають систематичне їх повторення та варіативність завдань. Випадки додавання і віднімання, пов'язані з нумерацією, пояснюються на основі предметних дій з пучками-десятками та окремими паличками [4, 65].
У межах 20 учні вивчають табличні випадки додавання і віднімання з переходом через десяток. Засвоєння таблиць має бути доведене до автоматизму. Опрацювання таблиць проводиться у послідовності від наймен-шого другого доданка і відповідно від'ємника. Основним обчислювальним прийомом виступає прийом додавання і віднімання числа частинами.
Спочатку учні ознайомлюються з прийомами усного додавання і віднімання без переходу через десяток. Далі вводяться письмові прийоми виконання дій (без переходу і з переходом через десяток). Останніми розглядаються випадки усного додавання і віднімання з переходом через десяток. У межах кожної групи дії опрацьовуються не одночасно, а послідовно — додавання, а потім віднімання. У межах однієї дії, крім віднімання двоцифрових чисел з переходом через десяток, розглядається спочатку загальний випадок, наприклад 34 + 52, а потім окремі випадки цієї групи (54 + 3, 2 + 32, 54 + 30, 20 + 41). При такому підході закріплюється загальний алгоритм виконання дій [7, 43].
Табличне множення і ділення вивчають у 2-3 класах: у 2-му — множення чисел 2, 3, 4 і 5 та ділення на 2, 3, 4 і 5; у 3-му — решту випадків табличного множення і ділення [9]. Таблиці множення складають на основі відповідних випадків додавання однакових доданків, а таблиці ділення — на основі зв'язку дій множення і ділення, тобто з таблиць множення. Всі таблиці мають бути засвоєні дітьми напам'ять. Для опрацювання таблиць множення кожного з чисел в середньому відводиться 4-6 уроків, стільки ж часу — на одну таблицю ділення. Опрацювання матеріалу проводиться в такій послідовності: ознайомлення з дією множення, складання і заучування таблиці множення числа 2, ознайомлення з дією ділення, зв'язок дій множення і ділення; складання і заучування таблиці ділення на 2; складання і заучування таблиць множення числа 3 і ділення на 3 і т. д.
У межах 1000 належна увага приділяється як усним, так і письмовим способам додавання і віднімання. У вивченні усних прийомів розглядаються випадки дій, що зводяться до дій у межах 100. Основним засобом унаочнення прийомів усного додавання та віднімання є відповідні форми структурних записів. У ході вивчення усного множення і ділення розглядаються: випадки множення і ділення, пов'язані з числами 1 і 0, 10 і 100; традиційні випадки позатабличного множення і ділення в межах 100 (24 • 3, 72 : 6, 64 : 16); нескладні випадки дій з трицифровими числами [62, 34].
У вивченні додавання і віднімання можна вичленити дії з натуральними числами та дії з іменованими числами. Оскільки діти вже ознайомлені з додаванням і відніманням трицифрових чисел, то ознайомлення з діями багато цифрових чисел здійснюється прямим перенесенням. У формуванні навичок виконання дій варто певну увагу приділити перевірці правильності обчислень способом застосування оберненої дії. Додавання і віднімання іменованих чисел супроводжується розглядом вправ на перетворення іменованих чисел [32, 59].
Множення і ділення багатоцифрових чисел вивчається в такій послідовності: множення на одноцифрове число; ділення на одноцифрове число; множення чисел, що закінчуються нулями; ділення на числа, що закінчуються нулями; множення на двоцифрове і трицифрове числа; ділення на двоцифрове число. Пояснення письмового алгоритму дій другого ступеня займає чимало часу. Щоб дітям не доводилося тривалий час бути тільки спостерігачами та слухачами, варто варіювати методи пояснення нового матеріалу, зокрема застосовувати самостійне ознайомлення зі знаходженням значення виразу за поясненнями, поданими в підручнику.
Усні вправи є однією з ефективних форм організації колективної та індивідуальної роботи учнів на уроках математики. Вони розвивають у школярів уважність, спостережливість, ініціативу, викликають інтерес до роботи. За їх допомогою вчитель встановлює на уроці оперативний і ефективний зворотній зв'язок, який дозволяє своєчасно контролювати процес оволодіння учнями знаннями і вміннями [41, 35].
Виконуючи усні вправи, учні початкових класів не тільки вдосконалюють обчислювальні навички, вони закріплюють теоретичний матеріал тренують увагу, пам'ять, підвищують мовну культуру. Діти з цікавістю ставляться до таких вправ, їх висока активність в цьому віці може бути реалізована через усні вправи, які вони сприймають із задоволенням.
Вправи мають різне дидактичне призначення:
- вправи для актуалізації опорних знань;
- вправи для сприймання і свідомого осмислення матеріалу;
- вправи на застосування набутих знань [53, 43].
Вправи першої групи використовують перед поясненням нового матеріалу, їх вважають підготовкою до сприйняття теоретичного матеріалу, вони полегшують вивчення нових понять, тверджень, властивостей.
Вправи другої групи сприяють глибокому осмисленню вивченого, допомагають учням засвоїти ту чи іншу тему. Їх використовують після пояснення нового матеріалу, коли учень втомився і можна працювати усно, одночасно одержуючи змогу перевірити глибину засвоєння матеріалу.
Вправи третьої групи дають можливість застосувати набуті знання, вони спрямовані на формування вмінь та навичок, розвивають логічне мислення, дають змогу дитині розвивати творчі здібності.
Усні вправи можуть бути максимально варіативні як за змістом, так і за формою. Проводять їх у вигляді змагання між командами, впорядкування відповідей, математичного диктанту, гри „Сходинки”, ігор „Математичне лото”, „Мовчанка”, „Слабка ланка”, „За хвилину розв’яжи” [4].
Перелік та опис форм усних вправ можна продовжити. Досвід роботи показує, що усні вправи при вмілому їх використанні відіграють неабияку роль у підвищенні ефективності уроку. Знаючи клас, індивідуальні особливості учнів, можна дібрати оптимальний темп, оптимальний зміст, форми, методи та засоби проведення усних вправ [19]. Усні вправи повинні проводитися у швидкому темпі, якщо йдеться про відпрацювання навичок. Але якщо усні вправи використовуються з метою закріплення тільки що вивченого, то в цьому випадку недоцільно квапити учнів. Чим свідоміше будуть їх дії на початку формування навичок, тим глибше і міцніше буде їх засвоєння.
Під час виконання усних вправ доцільно запитувати не лише учнів, які добре встигають з математики – це послаблює їх ініціативу й активність, а й тих, яким математика вдається важче. Щоб дати можливість поміркувати всім сильним учням, можна запропонувати записати відповіді і показати їх учителю. Усні вправи повинні бути, якщо це можливо, пов’язані з практичними, життєвими питаннями, відрізнятися легкістю побудови, ясністю та конкретністю змісту.
Одним з основних завдань усних вправ є вироблення навичок усних обчислень. Проте розвиток обчислювальних навиків не єдина мета усних вправ. Вони можуть сприяти підготовці учнів до сприйняття нового матеріалу. За їх допомогою можна організувати повторення раніше вивченого матеріалу. Усні вправи — також важливий засіб для розвитку мислення учнів. Усні вправи корисно проводити на початку уроку протягом 7- 8 хв. Це дозволяє створити в класі робочу атмосферу, є своєрідною гімнастикою, розминкою, яка сприяє подальшій роботі на уроці. Усні вправи допомагають урізноманітнити роботу на уроці, заставляють учнів думати, пояснювати, співставляти і знаходити різноманітні способи розв’язування. Розв’язування задач різними способами дає можливість без великих затрат часу одержати помітний ефект у розвитку логічного мислення.
Систематичне розв’язування вправ в усній формі сприяє засвоєнню теорії, допомагає усвідомленню її практичної діяльності, розвиває логічне мислення учнів, творчу ініціативу, кмітливість, формує ряд важливих практичних вмінь і навичок, допомагає здійснювати поступовий перехід до дедуктивних доведень [20, 4].
Усні вправи допомагають вчителю отримати оптимальне розв’язання педагогічних завдань на всіх етапах навчання. Практика показує, що розв’язування таких вправ сприяє розвитку логічного мислення, кмітливості, уваги, ініціативності, культури математичної мови учнів, заощаджує час, що дає можливість глибше і в більшому обсязі вивчати навчальний матеріал.
У початкових класах великого значення набуває робота з формування навичок усних обчислень ще й тому, що протягом чотирьох років навчання учні повинні не тільки свідомо засвоїти прийоми усних обчислень, а й набути міцних обчислювальних навичок. Опанування навичок усних обчислень має велике освітнє, виховне і практичне значення. Вони допомагають засвоїти багато питань теорії арифметичних дій (властивості дій, зв’язок між результатами і компонентами дій, зміна результатів дій залежно від зміни одного з компонентів тощо).
Усні обчислення допомагають кращому засвоєнню прийомів письмових обчислень, оскільки містять у собі елементи усних обчислень. Практичне значення їх у тому, що швидкість і правильність обчислень потрібні в житті, особливо тоді, коли дії не можна виконати письмово. Усні обчислення сприяють розвитку мислення учнів, їхньої кмітливості, математичної зіркості та спостережливості.
Прийоми усних обчислень ґрунтуються на знанні нумерації, основних властивостей дій, на зведенні обчислень до більш простих, результати яких або містяться в таблицях дій, або легко можуть бути одержані із табличних результатів [41, 36].
Вивчаючи арифметичні дії, учня знайомляться з великою кількістю видів обчислень. Завдання вчителя полягають в тому, щоб прищепити учням уміння виконувати арифметичні дії. Процес формування обчислювальних умінь не є одночасним, а проходить ряд етапів: від дії за зразком до самостійного рішення прикладів і, нарешті, до швидких обчислень. У межах першої сотні всі обчислення виконуються учнями усно, а в межах тисячі тільки окремі види обчислень можуть бути виконані усно.
Особливість навчання молодшого школяра полягає в тому, що, засвоївши спосіб рішення прикладу після показу зразка рішення вчителем, учень наслідує такому порядку операцій. Автоматизація виконання навчальної дії визначає шлях розумової діяльності. Тому, коли за навчальною програмою молодші школярі проходять перевірку арифметичних дій, тоді перевірочні дії стають частиною навчального матеріалу, але не того моноліту знань, які вже сформувалися і автоматизувалися. Формування навчальної діяльності учнів припускає, що вчитель разом з показом обчислювальних прийомів знайомить з перевіркою рішення [42, 33].
Практика школи показує, що недостатня увага приділяється вивченню вимог до завдань обчислювального характеру, що формує в учнів звичку без попереднього аналізу починати обчислення. Така методика вправ позбавляє учнів реалізації тих можливостей в самоконтролі, які закладені авторами підручників у вигляді особливих структур завдань. Тому методисти пропонують вчителю відразу ж після того, як вирішення навчальних завдань, що полягає в знаходженні прийому обчислень, із залученням наочності або із залученням вже засвоєних обчислювальних прийомів, показати учням, як працює самоконтроль [41, 34].
Обчислювальний прийом відпрацьовується і автоматизується в ході застосування знакового запису зразка обчислень і словесної моделі способу дії. Формування навчальної дії відбувається в процесі фронтальної роботи учнів, при коментуванні рішень прикладів. Самоконтроль полягатиме в звіренні еталону дії із заданими умовами. Важливо, щоб учні вчилися знаходити приклади на вивчений обчислювальний прийом з безлічі інших прикладів, а в ході самоконтролю виявляти грубі помилки. Кажучи про повну математичну перевірку арифметичних дій, слід зазначити трудомісткість перевірочних дій, а отже можливі перевантаження учнів на уроках математики. Перевантаження молодших школярів негативно позначаються на процесі навчання і дають замість очікуваного позитивного ефекту суто негативний. Для того, щоб перевірка стала звичною для молодших школярів, а способи повної перевірки були направлені на викорінювання звички дітей компенсувати дії самоконтролю за рахунок зовнішнього контролю (звірка відповідей з товаришами, контроль старших), слід пропонувати учням вирішувати пари прикладів: основний і перевірочний.
Усні обчислення під час формування обчислювальної навички прохо-дять ряд стадій: від докладних записів рішень і пояснень, до скорочення записів, до автоматизованої або добре освоєної дії. Разом з обчислювальною навичкою формується і навичка самоконтролю у виконанні арифметичних дій. Така навичка формується повною мірою за наявністю цілеспрямованих дій учителя по орієнтації молодших школярів на контрольні дії [30, 65].
Різні види обчислень вимагають і різних підходів учителя у формуванні навичок самоконтролю учнів. Усі обчислення в математиці ділять на усні і письмові. Таке розділення обчислень залежить від того, чи можливо навчитися виконувати обчислення без запису проміжних результатів чи ні. Різняться підходи формування навичок самоконтролю учнів.
Серед усних обчислень слід виділити табличні випадки обчислень і позатабличні, засновані на табличному обчисленні або на декількох операційних діях, що містять складання прикладу вигляду 672+219 можна віднести до письмових обчислень, а 67 + 21 – це приклад усного обчислення. Виходячи з методичних посилок вивчення арифметичних дій, розглянемо усне додавання і віднімання, множення і ділення, а також письмові алгоритми дій додавання і віднімання, множення і ділення. Оскільки основною дією арифметики є дія додавання (дію множення можна розглядати як складання однакових чисел), те вивчення табличного складання і зворотної дії (табличного віднімання) буде пов'язано з наочністю.
В цілях самоконтролю у виконанні табличного складання, віднімання можуть застосовуватися рахункові палички, роздатковий матеріал (рахунковий матеріал), а також шкільна лінійка, моделі монет та інша наочність. Для самоконтролю у виконанні табличного додавання, віднімання використовується склад числа. Перевірку результатів обчислень учні можуть виконати за допомогою різних таблиць. Це таблиці додавання і віднімання в межах першого і другого десятків, таблиці опорних сум і різниць, а також таблиці складу числа [19, 57].
Зупинимося докладніше на використанні наочних засобів для самоконтролю учнів при обчисленнях в межах перших двох десятків. Доцільно ілюстрацію прикладів за допомогою рахункового матеріалу виконувати на перших етапах вивчення складання і віднімання, коли учні усвідомлюють ще зміст самих дій додавання і віднімання. В результаті складання безлічі предметів учні переконуються, що дія додавання приводить до збільшення результату, а дія віднімання, будучи зворотною дією для додавання, приводить до зменшення чисельності безлічі предметів, оскільки виконується видалення частини предметів з основної множини.
Дії множення і ділення вивчаються після того, як учні вивчили прийоми усного додавання і віднімання. Це пояснюється тим, що множення позначає не нову за своїм змістом дію, а дія, направлена на підвищення швидкості обчислень. Оскільки додавання не завжди, не у всіх випадках швидко призводить до результатів обчислень то додавання однакових чисел може бути замінено новою арифметичною дією, множенням. Важливо, що саме такий математичний підхід використовується в початковій школі, щоб познайомити учнів із змістом дії множення (у математиці є ще декілька підходів, щоб ввести операцію множення). Множення, як додавання декількох однакових чисел, зрозуміло молодшому школяреві, і це дає підстави для самоконтролю учнів [7, 43].
Особливість дії множення вимагає спеціальних методичних підходів до наочного вивчення обчислювальних прийомів. Для розуміння учнями табличного множення доцільно привертати практичний досвід молодших школярів і розглядати шляхи підрахунку предметів в умовах об'єднання в рівні групи. Наприклад, скріплення морквин, редисок в пучки, а так само нашивання на картон по десятку ґудзиків, розфасовка сипких товарів по 1 кг, по 2 кг і ін. Велике місце займають рахункові палички. Їх можна розкладати на рівні групи, визначити їх кількість у всіх групах.
Ділення, як зворотна дія, може вивчатися одночасно з множенням. Можна ці дії розглядати послідовно: спочатку множення, потім ділення. Для розуміння учнями змісту ділення слід показати наявність рівних груп, зміна навчальних завдань при розгляді такої арифметичної дії. Якщо при множенні відповідь прикладу у разі відсутності нуля завжди не менше чисел умови (за наявності в умові прикладу одиниці виходить результат такої ж, як і друге число умови), то при діленні, як і при відніманні, найбільшим числом в прикладі (за відсутності одиниці в умові) є ділене, тобто перше число прикладу [32, 61].
Таким чином, для вивчення множення і ділення з орієнтацією молодших школярів на самоконтроль у виконанні цих дій відкриваються нові перспективи, а саме порівняння прийомів самоконтролю у виконанні складання і віднімання з прийомами самоконтролю при множенні, діленні. Важливо вказувати учням на загальні моменти, на аналогію дій, оскільки мислення молодших школярів таке, що самі вони не можуть побачити загальне навіть в споріднених поняттях. Важливо і те, що можна перенести окремі опорні сигнали для самоконтролю в нові арифметичні дії.
Отже, потрібно починати вивчати табличне множення із зрозумілих дітям ілюстрацій, щоб перевірка табличного множення при необхідності могла бути виконана за допомогою дії складання. Зручно для таких цілей використовувати природні групи. Наприклад, картинки вишень по 2, по 3 штуки. Зрозумілим стає зміст множення, коли виконуються ілюстрації із залученням кольорових паличок різних розмірів [30, 66].
Наприклад, складається склад потягу з 5 червоних (однакових за розмірами) паличок, потім маленькі вагончики замінюються одним великим вагоном, паличкою фіолетового кольору. Якщо довжина червоної палички дорівнює одному сантиметру, тоді можна скористатися таким записом:
1+ 1 + 1 + 1 + 1 = 5.
Перевірити правильність обчислень можна за допомогою вимірювання довжини фіолетової палички. За допомогою множення можна виконати такий запис: 1 х 5 = 5.
Якщо в якості вагончиків брати палички інших розмірів, то можна показати рівноцінність записів:
3 + 3 + 3 + 3 = 12 і 3 х 4 = 12.
При ілюстрації дій ділення слід пам'ятати про два види завдань, які розв'язуються дією ділення (завдання на ділення за змістом і ділення на частини). По суті справи, однією і тією ж дією ділення описуються різні практичні ситуації. "12 кроликів розмістили порівну в трьох клітках. По скільки кроликів стало в одній клітці?" Для розуміння учнями значення слова "порівну", як важливої умови застосування дії ділення, можна запропонувати це ж завдання, опустивши слово порівну. Потрібно розібрати різні варіанти рішення нової задачі [41, 38].
Якщо учнів ставити тільки в умови стандартних завдань, то говорити про самоконтроль по ходу рішень не доводиться навіть в умовах, коли учням нагадуватиметься про виконання контрольних дій. Учитель може судити про результативність самоконтролю учнів у виконанні ділення за якістю рішення прикладів. Усвідомлення контрольних дій учнями досягається в ході роботи вчителя, як по формуванню сенсу окремої арифметичної дії, так і по формуванню змісту обчислювальних прийомів.
Кажучи про постановку навчальних завдань, а також про доступні шляхи їх вирішення в умовах навчання самоконтролю молодших школярів, підкреслимо ситуацію при вивченні табличного множення, як основу усного і письмового множення. Можна складати з учнями таблиці множення із залученням вже знайомих ситуацій, коли предмети об'єднані в природні групи [62, 34].
Наприклад, учням пропонується плакат з намальованими на ньому вишеньками. Учитель викликає учнів до дошки і розподіляє обов'язки так: один учень показує групи вишень (спочатку одну вишню, потім кожного разу на одну вишню більше), другий учень записує приклади на складання, а третій учень записує приклади на множення. Після такої роботи учні роблять висновок, що на 1 можна помножити за правилом: "Якщо число умножають на 1, то відповідь записується це саме число". Якщо на плакаті зобразити вишні в пензликах по дві штуки, то можна скласти таблицю множення числа 2.
Табличне ділення розглядається вже не на конкретних ситуаціях, а із залученням таблиці множення. Якщо учень по таблиці множення може вільно називати результати табличного ділення, то самоконтроль у виконанні табличного ділення забезпечений. Поки учні недостатньо міцно оволоділи табличним діленням вони можуть здійснювати самоконтроль, використо-вуючи запис таблиці множення. Проте подивитися в значення табличних результатів можна після того, як завдання виконане [29, 54].
Учень може перевірити відповідь прикладу, знайшовши результат множення дією віднімання. Застосування дії віднімання для перевірки множення визначається тим, що множення на 10 запам'ятовується за правилом, а від кінцевого результату можна виходити для відшукання випадків табличного множення. (3 х 10 = 30, а 3 х 8 = 30 - 3 - 3 = 24).
Для самоконтролю дій множення, ділення можна рекомендувати використовувати стрічку чисел від 1 до 100, яка виготовляється з цільного паперу за зразком сантиметрової кравецької стрічки. Наприклад, відшукуючи за допомогою стрічки результат множення 5 х 4, учні можуть міркувати так: "Потрібно 5 умножити, тому знаходжу на стрічці клітку з цифрою 5. По 5 потрібно узяти 4 рази, тому смужок в 5 кліток відмірюю 4. На кінці четвертої смужки читаю відповідь 20." Розглянемо знаходження результату ділення 49 : 7 на числовій стрічці. "Потрібно 49 ділити, тому знаходжу на стрічці число 49. Тепер складатиму смужки по 7 кліток. Вважаю, скільки таких смужок вийшло до 49, їх отримано 7. Це означає, що відповідь прикладу дорівнює 7."
Для виробки навички табличного множення потрібна копітка робота по організації самих різних видів усного рахунку, з якого починається кожен урок математики. Покажемо зразкові види усного рахунку на табличне множення і ділення. Як показує практика школи, найбільш ефективними прийомами усного рахунку є: гра з плесканнями в долоні, гра в крапки, розповідь таблиці по порядку, робота з перфокартами [33, 86].
Для закріплення табличного множення і ділення використовують електрифіковану таблицю, гру "Лото". Картки для гри містять умови прикладів і їх відповіді. В ході усного рахунку виробляються навики самоконтролю. При міцному запам'ятовуванні таблиць множення і ділення у учнів не викликає ускладнень рішення прикладів, самоконтроль автоматизований. Якщо є сумніви, зупинки, то слід говорити про недостатню обчислювальну навичку і недостатню навичку самоконтролю.
Отже, усні обчислення важливі для поведінки дітей у життєвих ситуаціях. З метою розвитку комунікативних навичок важливо прищепити їм уміння усно обчислювати. Правильність усних обчислень досягається при сформованому самоконтролі.