Вирішальне значення для системи шкільної освіти має формуючий вплив предмета математики на розвиток логічного мислення, просторових уявлень і уяви, алгоритмічної і інформаційної культури, уваги, пам’яті.
Характеристика геометрії як науки становить методологічну основу для проектування шкільного предмета геометрії і, природно, ведуть до основних завдань навчання геометрії в школі:
- розвиток образного, зокрема просторового, мислення, розвиток логічного мислення;
- формування розуміння відношень між геометричними об’єктами і об’єктами реального світу;
- вміння застосовувати геометрію для розв’язування практичних задач.
Вказана вище триєдина мета навчання геометрії є загальновизнаною. Однак її реалізація на практиці викликає значні труднощі. Безумовно, переважна частина цих труднощів має об’єктивну природу: складність предмета та складність видів діяльності, які мають опанувати учні.
Розділ «Початкові відомості зі стереометрії» є новим у програмі геометрії в 9-х класах і має на меті, щоб учні, які не будуть продовжувати вивчення геометрії в старших класах, мали уявлення про просторові фігури, про обчислення площ поверхонь та об’ємів простіших геометричних тіл. Інше призначення цього розділу – пропедевтична підготовка до вивчення геометрії в 10 і 11 класах. Основна мета – повторити, привести в систему і розширити відомості про геометричні фігури в просторі та навчити обчислювати площі поверхонь і об’єм розглянутих тіл.
Однією з основних ідей розбудови математичної освіти, що записані в «Концепції шкільної математичної освіти», є ідея гармонійного розвитку особистості, виховання творчих здібностей людини, здатної вирішувати найскладніші життєві проблеми. При цьому перед геометрією ставляться важливі завдання з формування мислення, розвитку уяви, просторових уявлень, практичних навичок і умінь, оскільки вони є вагомими компонентами загальнолюдської культури взагалі. Діюча система шкільної геометричної освіти не може забезпечити належне виконання цих завдань. Це обумовлено, насамперед, її будовою.
Курс математики 5–6-х класів вважається пропедевтичним у питаннях вивчення геометрії. Він має за мету сформувати в учнів елементарні знання про основні геометричні фігури перед вивченням систематичного курсу геометрії. Таке попереднє вивчення на рівні ознайомлення істотно полегшує наступне розгортання логічної системи знань з дотриманням строгості доведення. Однак геометрична частина настільки скорочена, що не дає змоги досягти поставленої мети навіть за умови, що молодший підлітковий вік є сприятливим для розвитку образного мислення, просторових уявлень та уяви, вкрай необхідних для орієнтації в середовищі, що нас оточує, для цілісного, багатогранного сприймання дійсності.
Систематичний курс геометрії у 7–11-х класах чітко розмежований. У підручнику О.В. Погорєлова «Геометрія 7–11», за яким донині навчали геометрії в переважній більшості шкіл України, розділи «Планіметрія» та «Стереометрія» подаються окремо, причому перша частина «Планіметрія» елементів стереометрії не містить. Така штучна й тривала ізоляція психіки дитини від співвідношень реального тривимірного світу завдає значної шкоди природному розвитку її просторової уяви. Актуальною є потреба перегляду шкільних програм з математики, зокрема з геометрії. Слід зазначити, що у цьому напрямку вже намітилися певні зрушення.
Так, нові програми з математики для основної та профільної старшої школи побудовані з урахуванням вимог Державного стандарту базової і повної середньої освіти, яким передбачено вивчення математики за методом фузіонізму. Зокрема, курс геометрії основної школи пропонується будувати так, щоб елементи стереометрії тісно перепліталися з відповідним планіметричним матеріалом, що значно полегшить створення в систематичному курсі стереометрії цілісних і міцних знань, стійких до збереження в пам'яті, сприятиме розвитку просторових уявлень та уяви учнів. Часті переходи від двовимірної площини до тривимірного простору сприятимуть розвитку інтуїції школяра. Позитивною рисою також є підвищена увага до питань пропедевтики геометрії, особливо в 5–6-х кл-х (див. додаток А).
Одночасно з підручником геометрії О.В. Погорєлова в 7–9-х класах використовується підручник геометрії авторського колективу на чолі з Г.П. Бевзом. Він у 9-му класі завершується розділом «Елементи стереометрії». У цьому розділі учнів ознайомлюють з прямими та площинами в просторі, вводять поняття многогранників, фігур обертання, а також пропонують формули площ поверхонь та об'ємів геометричних тіл. Вивчення даного розділу передбачає виконання практичних завдань з виготовлення моделей многогранників, фігур обертання, розв'язування вправ на обчислення їх площ поверхонь та об'ємів.
Як бачимо, зрушення щодо введення питань стереометрії в курс математики основної школи є. Однак питання визначення змісту і обсягу стереометричного матеріалу в курсі математики основної школи, його місця в програмі, вимог до підготовки учнів під час диференційованого навчання залишаються розв'язаними недостатньо. Недостатньо розроблена також методика його вивчення та не створена система задач, яка забезпечує це вивчення.
Виходячи з цілей і завдань вивчення математики, рекомендованого змісту питань геометрії, шкільний курс геометричної освіти доцільно будувати так.
5–6-ті класи – курс наочної геометрії, який по суті має бути пропедевтичним перед вивченням систематичних курсів планіметрії та стереометрії. Саме в цьому полягає одна з його основних цілей. Не менш важливим є озброєння учнів практичними знаннями з геометрії, які потрібні їм під час вивчення географії, фізики, креслення, трудового навчання та інших суміжних дисциплін.
Пріоритетними завданнями мають бути розвиток просторових уявлень та уяви, систематизація емпіричного геометричного матеріалу, накопиченого в дошкільному віці та в початкових класах; формування уявлень про певні класи геометричних фігур на площині та в просторі; формування навичок використання формул площ та об'ємів геометричних фігур під розв'язування задач прикладної спрямованості.
Реалізація цих завдань має здійснюватися через спостереження геометричних фігур (зокрема й просторових) в оточуючому середовищі, виділення їх з цього середовища та маніпулювання ними; використання моделей плоских і просторових фігур та їх виготовлення; вимірювання та обчислення за готовими формулами певних геометричних величин; дослідне встановлення деяких властивостей фігур, що розглядаються.
Спираючись на Державні стандарти базової та повної середньої освіти, доцільно в зміст даного курсу разом з наявним геометричним матеріалом включити питання стереометрії.
Зміст геометричного матеріалу та вимоги до підготовки учнів подано у таблиці 1 (див. додаток Б).
7–9-й класи – систематичний курс планіметрії, який має будуватися на основі фузіонізму, тобто стереометричний матеріал має органічно поєднуватися з відповідними поняттями та фактами планіметрії без суттєвих змін внутрішньої логічної структури самого курсу. При цьому планіметрія вивчається на систематичному рівні в межах існуючих державних програм, з відповідними обґрунтуваннями та доведеннями розглядуваних фактів, стереометрія – на рівні пропедевтики.
Стереометричний матеріал, що вивчається у 7–9-х класах, за назвами дещо збігається із запропонованим у 5–6-х класах, проте зміст понять поступово наповнюється новими логіко-математичними властивостями, а сформовані образи перетворюються у математичні поняття, яким потім даються чіткі означення.
До завдань, що стосуються вивчення стереометричної частини курсу, належать такі: формування понять про певні класи многогранників, тіл обертання та вивчення деяких їх властивостей; формування вмінь застосовувати формули площ поверхонь та об'ємів тіл до розв'язування прикладних задач; формування конструктивних умінь учнів, їх графічної культури.
Питання стереометрії мають рівномірно розглядати у 7–9-х класах, що забезпечить безперервність їх вивчення. Для міцного та свідомого засвоєння понять стереометрії слід якомога ширше використовувати моделі, таблиці, рисунки.
Зміст стереометричного матеріалу в 7–9-х класах та вимоги до підготовки учнів подано у таблиці 2 (див. додаток Б).
10–11-й класи – систематичний курс стереометрії, завдання якого – систематичне вивчення стереометричного матеріалу на глибшому теоретичному рівні з повним обґрунтуванням тверджень, що доводяться.