Моделі в науковому дослідженніБудь-який досліджуваний процес або явище залежить від багатьох діючих на нього факторів. Первинними у пізнанні сутності переважної більшості досліджуваних процесів і явищ виступають спостереження, вимірювання тощо. Кожне спостереження чи вимірювання може зафіксувати тільки якісь окремі фактори. Щоб найбільш повно пізнати процес чи явище, потрібно одержати величезну кількість дослідних результатів. Виділити головне у таких результатах на основі їх систематизації та узагальнення часто буває зовсім непросто. Тому чисельну і різноманітну інформацію намагаються "згустити", "стиснути" у деяке абстрактне поняття - модель. Вивчення досліджуваних об'єктів за допомогою моделей називають моделюванням.


Моделювання - це теоретичне чи практичне дослідження об'єкта, в якому безпосередньо вивчається не сам об'єкт пізнання, а допоміжна штучна або природна система, яка знаходиться в деякому об'єктивному відношенні із об'єктом пізнання, здатна його заміняти в певному відношенні і яка дає при його дослідженні в кінцевому рахунку інформацію про сам модельований об'єкт. Моделювання ґрунтується на методах теорії подібності. Подібними називаються явища, у яких всі процеси (повна подібність) або найбільш суттєві при даному дослідженні (неповна або локальна подібність) у будь-який момент часу і у будь-якій точці простору відрізняються від відповідних параметрів іншого явища у певне (постійне) число разів, що називають масштабом.
Ознаками подібності й умовами встановлення її при реалізації моделювання обирають чисельно однакові критерії подібності.
Подібність явищ може бути фізичною і математичною. У фізично подібних явищах всі процеси (основні для даного дослідження) мають однакове фізичне походження, У математично подібних явищах процеси мають різне фізичне походження, але описуються однаковими рівняннями. Можливості встановлення подібності при математичному моделюванні виявляють за допомогою теорії подібності, яка ґрунтується на аналізі відповідних рівнянь.
Під моделями у буквальному значенні розуміють штучні системи у вигляді установок, приладів, комбінації окремих елементів чи сум логічних уявлень, що відтворюють явища або їх групу, і які подібні до тих, що вивчаються. Модель знаходиться у певній відповідності до досліджуваного об'єкта, може замінити його при дослідженні і дає можливість отримати інформацію про цей об'єкт. Найістотніша функція моделі - заміщення об'єкта вивчення і виконання нею ролі засобу, інструменту пізнання, який можна застосовувати як до вивчення самого оригіналу, так і до подібних йому. Моделі ділять на такі основні групи:
- математичні - призначені для дослідження явищ на установках, які дозволяють реалізувати математичну подібність;
- геометричні (іноді їх називають макетами) - дають тільки геометричну подібність без відображення суті явищ, які відбуваються;
- фізичні - для дослідження явищ на установках, які зберігають подібність основних фізичних процесів досліджуваного явища. Найбільш поширеними у наукових дослідженнях фізичні та математичні моделі.
Фізичне моделювання дає можливість замінити у процесі дослідження складні об'єкти і процеси більш простими і досліджувати на основі цього замість реальних об'єктів і процесів їх прості замінники. При цьому вони дають можливість наочно спостерігати за багатьма реальними процесами чи явищами. За допомогою фізичних моделей стає можливим вивчати вплив окремих параметрів на досліджувані об'єкти.
Математичні моделі дозволяють кількісно досліджувати процеси і явища, які важко піддаються вивченню на фізичних моделях. Математичним моделюванням можна передбачити властивості або поведінку досліджуваного об'єкта чи процесу ще до їх створення. При математичному моделюванні виникають похибки трьох видів:
- первинна похибка - через розходження між дійсним значенням фізичної величини в натурі та її розрахунковим значенням, прийнятим для здійснення на моделі;
- вторинна похибка - через неточність відтворення на моделі модельованих величин (розрахункових значень) і похибки вимірювання;
- принципова похибка - через неповне врахування у моделі факторів, що впливають на досліджувані процеси (наприклад, зумовлених наближеним моделюванням замість точного.
У теоретичних дослідженнях застосовують моделі-аналоги (або ще моделі-подоби). Виходячи з подібності об'єктів, процесів чи явищ, вивчають експериментально теоретичним шляхом поведінку моделі, а потім за допомогою відповідного математичного апарату визначають справжні закономірності. Проілюструвати сутність таких моделей можна на досить простому прикладі. Навіщо теоретично визначати або безпосередньо вимірювати висоту Н телевізійної вежі. Для цього достатньо скористатись найпростішою моделлю — трикутником, і за допомогою теореми про подібність трикутників шляхом вимірювання відстані г до вежі визначити її висоту за формулою

Н= h х Кp,

де Кp - критерій подібності, який дорівнює Кp = z : 1 (1 - у даному разі це сторона трикутника).
Звісно, що при дослідженні складних об'єктів і процесів критерії подібності набагато складніші.
Значно розширюються можливості моделювання за допомогою електронно-обчислювальної техніки, особливо у тих випадках, коли недоцільно або неможливо відтворити на реальних моделях (наприклад, моделювання аварійних режимів і ситуацій). Виготовляти натурні моделі (геометричні і фізичні), навіть для проведення досліджень у звичайних умовах, пов'язане із значними витратами коштів і часу. За допомогою сучасної комп'ютерної техніки можна моделювати і спостерігати різні процеси, аналізувати варіанти різноманітних конструкцій, вибирати серед них оптимальні.
Стандартних рекомендацій щодо вибору і побудови моделей не існує. Головне, щоб модель відображала сутність досліджуваного об'єкта. Незначні фактори, зайва деталізація, другорядні явища та ін.
Тільки ускладнюють модель, роблять її громіздкою. Тому модель повинна бути оптимальною за своєю структурою, бажано наочною, але головне - достатньо адекватною, тобто описувати закономірності досліджуваного об'єкта з потрібною точністю. Звичайно, що при побудові моделі слід враховувати всі особливості того об'єкта, який вона повинна замінити.

В.К.Сидоренко, П.В.Дмитренко
Основи наукових досліджень
Навчальний посібник для вищих педагогічних закладів освіти